45=5t^2+2

Simple and best practice solution for 45=5t^2+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 45=5t^2+2 equation:



45=5t^2+2
We move all terms to the left:
45-(5t^2+2)=0
We get rid of parentheses
-5t^2-2+45=0
We add all the numbers together, and all the variables
-5t^2+43=0
a = -5; b = 0; c = +43;
Δ = b2-4ac
Δ = 02-4·(-5)·43
Δ = 860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{860}=\sqrt{4*215}=\sqrt{4}*\sqrt{215}=2\sqrt{215}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{215}}{2*-5}=\frac{0-2\sqrt{215}}{-10} =-\frac{2\sqrt{215}}{-10} =-\frac{\sqrt{215}}{-5} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{215}}{2*-5}=\frac{0+2\sqrt{215}}{-10} =\frac{2\sqrt{215}}{-10} =\frac{\sqrt{215}}{-5} $

See similar equations:

| 2/1(4-2x-1)=0 | | 2/3(6x-9)=-3 | | 4^3x+1=7^x+2 | | 7x2-8x2=6x2+13-6 | | 2x-8=9x-15 | | 7x-7=103 | | -4y^2+56y=36 | | 0.8(4-a)=5a | | -2w+27=7(w-9) | | 0.4−0.3w+0.4w=5 | | 16t^2-33t+12=0 | | a=48-2a | | 4.9q-3.2-4.1q=-0.2q-5.2 | | 2.1q-3.6-2.6q=-1.5q-2.5 | | (4−5y)−2(3.5y−8)(4−5y)−2(3.5y−8)=0 | | -4-6=3x+3-2x | | 4x=11-(-17) | | 1x-13=-3x-10 | | x-(2x-9)=99 | | 28-46=3(x-1)-6 | | 4.3q-4.8-5.9q=-2.6q-1.6 | | 8x-102=42 | | 12/3y=35 | | -7(x+1)-18=30+8 | | 122=x+x | | 95=-u+227 | | 7m+8-5m=39 | | x^2+x^2=225 | | 8x-56=180 | | -5(x+4)-43=1-19 | | 95=-u+277 | | 197=145-u |

Equations solver categories